毕业论文

打赏
当前位置: 毕业论文 > 材料科学 >

渗碳体纳米复合颗粒合成及在锂电上的应用

时间:2021-11-09 21:05来源:毕业论文
通过浮动催化热裂解法制备的碳包覆渗碳体纳米复合颗粒,经透射电子显微镜、X射线衍分析,700 ℃下制备样品为-氧化铁,其粒径为1〜5 nm碳壳平均厚度为〜1.2 nm;900 ℃下制备样品为

摘要:本实验通过浮动催化热裂解法制备的碳包覆渗碳体纳米复合颗粒,经透射电子显微镜、X射线衍分析,700 ℃下制备样品为-氧化铁,其粒径为1〜5 nm碳壳平均厚度为〜1。2 nm;900 ℃下制备样品为渗碳体,颗粒的直径为5〜20 nm,碳壳平均厚度为〜2。0 nm;1100℃下制备样品为渗碳体,颗粒的直径为10〜30 nm,碳壳平均厚度为〜2。5 nm。通过循环伏安曲线法和恒电流充放电曲线,评估了碳包覆渗碳体纳米复合颗粒在锂电上的电化学表现,900 ℃制备样品电化学性能要远远高于700 ℃和1100 ℃,比容量在0。2 A g-1、0。5 A g-1、1A g-1、3A g-1四个电流密度下所对应的值分别为793 mAh g-1、674mAh g-1、692mAh g-1、586mAh g-1。700 ℃制备的样品由于制备时碳包覆性能不佳,发生氧化反应使得金属核心成分发生改变,导致其电化学性能比900 ℃制备样品要低,1100 ℃制备的样品由于制备温度升高导致其粒径和石墨壁厚变大,降低了锂离子存储的活性位以及电化学性能。综上所诉900 ℃制备的复合材料拥有着良好的倍率性能,其作为锂电负极有着优秀的应用前景。74106

毕业论文关键词:渗碳体;纳米材料;复合材料;锂电;比容量

Synthesis of cementite nanocomposite particles and its application in lithium battery 

Abstract: Cementite nanoparticles encapsulated with graphitic shells were prepared from floating catalytic pyrolysis。According to transmission electron microscopy (TEM) and X ray diffraction (XRD) analysis, the sample prepared at 700 ℃was alpha iron oxide with the particle sizes of 1-5nm and carbon shell average thickness of ~1。2nm;the sample prepared at 900 ℃ was cementite with the particle sizes of 5-20 nm and carbon shell average thickness of ~2 nm;the sample prepared at 1100 ℃ was cementite with the particle sizes of 10-30 nm and carbon shell average thickness of ~2。5 nm。Electrochemical performance ofthe prepared samples were evaluated by cyclic voltammetry method and galvanostatic charge and discharge curves。 As a result, the performance of the Fe3C@Cprepared at 900 ℃is much higher than ones prepared at 700 or 1100 ℃。 At current densityof 0。2, 0。5, 1 and 3A g-1, their specific capacity was 793, 674, 692, 586 mAh g-1, respectively。The poor performance of samples prepared at 700 ℃ is due to their imperfectcarbon shellslead to oxidation of their ferrous cores。 Fe3C@Cprepared at 1100 ℃ has a bigger diameter and a thicker graphitic shell, which decreased its specific surface area and the activityposition for electrochemicalstorage of lithium ions。 Thus,Fe3C@Cprepared at 900 ℃ has very good rate capability, which is a promising anodematerial for lithium ion batteries。

Key words: Cementite; Nanomaterials; Composite; Lithium ion batteries; Specific capacity 

目录

1 绪论 1

1。1 碳材料 1

1。1。1 碳的简介 1

1。1。2 C60的性质及应用 1

1。1。3 石墨烯的性质及应用 3

1。2 渗碳体 4

1。2。1 渗碳体的结构 4

1。2。2 渗碳体的电学性质 5

1。2。3 渗碳体常用的制备方法 5

1。3 锂离子电池 7

1。3。1 锂离子电池概述 7

1。3。2 锂离子电池发展 7

1。3。3 锂离子电池的工作原理 8

1。3。4 锂离子电池正极材料 渗碳体纳米复合颗粒合成及在锂电上的应用:http://www.youerw.com/cailiao/lunwen_84605.html

------分隔线----------------------------
推荐内容