毕业论文

打赏
当前位置: 毕业论文 > 外文文献翻译 >

扭矩笛卡尔阻抗控制技术控制轻量机器人英文文献和中文翻译(2)

时间:2021-02-23 21:54来源:毕业论文
The insertion task had been implemented before using an industrial robot and a compliant force-torque sensor [lo]. This experiment in addition focused on the auto- matic tracking of the motor block by


The insertion task  had been implemented before using an industrial  robot  and  a compliant force-torque sensor [lo]. This experiment in addition focused on the auto- matic  tracking of the motor block by image processing. Despite  a well  tuned  Cartesian  force controller,  the insertion process had  to be performed much slowlier, because of  the well known control problems which oc- cur in case of  hard contacts with conventional robots. In this context,  the advantage of  a compliant manip ulator became clear. Thus  it  is our strong belief  that  torque  controlled light-weight robots may bring  significant advantages, not  only in  applications which demand mobility, and hence  low masses, but  also for  applications requiring manipulation  in contact with unknown environments. Conclusions Three different approaches  for  implementing  com- pliant manipulation were  analyzed:  impedance,  stiff- ness and admittance control.  A  new controller  struc- ture was  proposed,  which  consists  of  an  impedance controller  enhanced  by  local stiffness  control.  The presented methods were  implemented  and compared on  DLR’s  light-weight  robots.  The  proposed  con- troller  shows up a better  performance  than  classical impedance and stiffness control. Compared to admit- tance  control,  it  has  lower  geometric accuracy,  but higher  bandwidth  and  impedance  range.  As  an  ap- plication  for  the new  controller,  the insertion  of  pis- tons into a motor block was described; programming times  (by directly  guiding  the robot), and  execution times were  drastically  reduced  compared  to  conven- tional techniques. References [l]  D. Abadia. Comparative analysis development of con- trol systems for the DLR light weight robot. Master’s thesis, DLR, University of  Zaragossa, 2000. State  feedback controller for flexible joint robots: 
A  globally  stable approach implemented on DLR’s light-weight  robots. [2]  A.  Albu-Schaffer and  G.  Hirzinger. IEEE International Conference on  Intelligent Robotic Systems, pages 1087-1093, 2000. [3] A. Albu-SchWer and G. Hirzinger. Parameter identi- fication and passivity based joint control for a 7DOF torque controlled light weight  robot.  IEEE Interna- tional Conference of  Robotics and Automation, pages [4] F. Caccavale, C. Natale, B. Siciliano, and L. Villani. Six-dof impedance control based on angle/axis repre- sentations.  IEEE  Transactions  on Robotics and Au- tomation, 15(2):289-299, 1999. [5] S.  Chen and  I. Km.  Theory of  stiffness control  in robotics using  the  conservative congruence  transfor- mation.  International Symposium  of  Robotics Re- search, pages 7-14, 1999. [6] S. Chen and I. Kao.  Simulation of  conservative con- gruence  transformation conservative  properties in the joint and Cartesian spaces.  IEEE International Con- ference of  Robotics and Automation, pages 1283-1288, 2000. [7] G. Hirzinger, A. Albu-Schiiffer, M. Hahnle, I. Schae- fer, and N. Sporer. On a new generation of torque con- trolled light-weight  robots.  IEEE International Con- ference of Robotics and Automation, pages 3356-3363, 2001. [8] N.  Hogan.  Impedance control: An  approach to ma- nipulation, part I - theory, part  I1 -  implementation, part I11 - applications. Journ. of  Dyn. Systems, Mea- surement and  Control, 107:l-24,  1985. [9] N. Hogan. Mechanical impedance  of single- and multi- articular systems.  In J.M. Winters and S. Woo, ed- itors, Multiple Muscle  Systems: Biomechanics  and Muscle Organization, pages 149-163. 扭矩笛卡尔阻抗控制技术控制轻量机器人英文文献和中文翻译(2):http://www.youerw.com/fanyi/lunwen_69931.html
------分隔线----------------------------
推荐内容